
PHYSICAL REVIEW E, VOLUME 65, 036417
Shear Alfvén waves in turbulent plasmas

Manuel Núñez
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~Received 5 October 2001; published 7 March 2002!

The rate of decay of shear Alfve´n waves along a magnetic field line of a diffusive plasma grows with the
number of nodes of the initial perturbation. It is reasonable to think that the energy dissipation produced by this
decay will be small if the perturbation was localized in a small set. This does not happen in turbulent plasmas:
transport of the oscillation by the flow involves the whole domain. A general relation is obtained proving that
the global energy dissipation is bounded below by an exponential of the number of nodes of any shear Alfve´n
wave along a segment of any field line of the average magnetic field.
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I. INTRODUCTION

Alfvén waves may be viewed as elastic oscillations
magnetic field lines within a plasma. They were one of
first and still most important successes of the magnetohy
dynamical~MHD! description of plasmas, and their impo
tance in many aspects of plasma physics, ranging from
stability of magnetically confined plasmas to magnetosph
problems, is unquestionable. Shear Alfve´n waves are particu
larly intuitive in ideal ~without kinetic or magnetic diffusiv-
ity! plasmas: they may be interpreted as transversal pe
bations of a background magnetic field, and can be stron
localized near particular field lines. By this reason they w
proposed for plasma heating purposes: see, e.g.,@1#. The idea
was that an electromagnetic wave of the right freque
would enter in resonance with a particular set of field lin
away from the plasma boundary in order to inject ene
there. While it is true that fusion and astrophysical plasm
have an extremely low diffusivity, this is nonetheless po
tive and Alfvén waves are modified by it: they eventual
decay unless a forcing is present, and diffuse away from
original location. Nevertheless the concept has proved
tremely robust and Alfve´n waves have been identified almo
everywhere, from the solar wind@2# to pseudodiffusion in
liquid metals@3#.

The frequency of shear Alfve´n waves may, in principle, be
arbitrarily high: it is connected to the number of nodes of
perturbed field along the background field line, rather in
manner similar to the frequency of the sound produced b
plucked string depends on the number of the up and do
oscillations of the string. For perturbations of an incompre
ible static equilibrium with magnetic fieldB0, the dispersion
relation of a perturbed fieldb5b0 exp(ik•x1 ivt) is

v52
~n1h!k2

2
6 i S ~B0•k!22

~n2h!2k4

4 D 1/2

, ~1!

where, for simplicity, we have normalized the magnetic p
meability and the plasma density to 1;n stands for the vis-
cosity andh for the resistivity of the plasma. If both coin
cide, it is apparent that we may get an arbitrarily hi
frequency~the imaginary part ofv) with a vectork large
and parallel toB0, although the higher the frequency, th
faster it decays.
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In axisymmetric configurations the frequency of Alfve´n
waves grows with the azimuthal mode@4#, essentially the
same phenomenon. In the same spirit, field lines connec
null points are particularly unstable by accumulation
nodes at the ends@5,6#.

Although as we have seen that diffusivity damps the
ergy of Alfvén waves, the more rapidly it does, the higher t
number of nodes, it is obvious that if the wave did not ha
much energy in the first place~by being localized near a
small set of field lines!, energy dissipation will remain smal
We may ask what could happen in turbulent plasmas, wh
the diffusion of Alfvén waves is enhanced by a chaotic flu
flow. It is clear that localization will not work there: th
perturbation will extend to the whole turbulent region mu
more quickly than the time scale of simple resistive diff
sion. In these conditions, how can one relate the numbe
nodes of a shear Alfve´n wave along a single field line with
the total energy dissipation? The question is not purely a
demic: plasmas with a large-scale magnetic field and sm
scale turbulent velocity and field are very relevant~see, e.g.,
@7#!. An extremely important phenomenon, the Alfve´n effect,
consists in that small-scale velocityu and field b tend to
become identical or opposed (u56b), precisely as in the
shear Alfvén waves. This has been explained~although not
with total rigor! by arguing that the average fieldB0 acts as a
field guide foru andb, who behave as Alfve´n perturbations
@8#. In particular this implies equipartition of energy:u2

5b2. Unquestionably the Alfve´n effect exists@9,10# and it
plays an important role in several astrophysical phenome
Moreover, it is the reason why it has been argued@11,12# that
the Kolmogorov statistics for homogeneous hydrodynam
turbulence should be modified for plasmas: the decay at
inertial range is slower,k23/2 againstk25/3. It seems worth-
wile to study how Alfvén waves dissipate energy in turbule
plasmas.

To address this question, we will first use some rigoro
results on the Gevrey regularity of the solutions of t
Navier-Stokes and MHD equations to find that these so
tions may be extended analytically to a three-dimensio
complex space. Some classical function theory will prov
us with a bound of the number of zeroes of an analytic fu
tion in a ball in terms of its maximum size at the bounda
This may be applied to the number of nodes of a shear
fvén wave along a field line. Thus we may estimate the nu
©2002 The American Physical Society17-1
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ber of nodes by the maximum size of the complex extens
of the magnetic field. So far all the results are fully rigorou
but to find this maximum we need to accept the previou
mentioned Iroshnikov-Kraichnan energy statistics for MH
turbulence. These will yield a bound of the maximum
terms of physically relevant parameters: resistivity, ene
dissipation and Alfve´n velocity. As a consequence we wi
obtain a lower bound on the global energy dissipation
terms of the number of nodes of a shear Alfve´n wave along
any background magnetic field line in the turbulent regio
This result is possible thanks to the mixing properties
chaotic flows, which in more than one sense are simpler t
more structured ones.

II. GENERAL ANALYSIS

Although the concept is more general, for our purpose
is enough to recall that a periodic functionf with Fourier
coefficients$ f k :kPZ3% is said to satisfy a Gevrey conditio
if for somes.0,

(
kPZ3

e2sku f ku2,`.

It is known that if the velocityu satisfies the Navier-Stoke
equations in a periodic box@0,2p#3, its Fourier expansion

u~ t,x!5 (
kPZ3

uk~ t !eik•x ~2!

satisfies a Gevrey condition for somes.0,

(
kPZ3

e2skuuk~ t !u2,`, ~3!

where for any multi-indexk, k5uk1u1uk2u1uk3u @13#. This
means that the functionx→u(t,x) may be analytically ex-
tended to the product of three bands„@0,2p#3(2s,s)…3 in
the complex spaceC3. This result is always true even wit
an added forcing, provided it too satisfies a Gevrey con
tion, up to some time depending on the initialu(0), andalso
for as long as the solution and its gradient remain bounde
the L2 norm. The proof of this theorem depends on so
formal properties of the Navier-Stokes equations that are
valid for the MHD system~see, e.g.,@14#!. In fact the result
has been later generalized to a wider class of equations
include the MHD ones@15#. Therefore, both velocityu and
magnetic fieldB may be analytically extended.

Since we will be interested in the number of zeroes
some componentBi of B, we recall one of the most impor
tant tools for these tasks: the Jensen formula, which we
peat for convenience~see, e.g.,@16# for a proof!. Let f be an
analytic function in a diskD(0,R), and leta1 , . . . ,aN be its
zeroes inD̄(0,R), repeated as many times as their multiplic
ties. Then

u f ~0!u)
n51

N
R

uanu
5expS 1

2pE0

2p

lnu f ~Reiuudu! D .
03641
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Denote byn(R) the number of zeroes off within the ball
D(0,R/2), and letM (R) be the maximum ofu f u at the circle
S(0,R). Then it easily follows

n~R!<
1

ln 2
ln

M ~R!

u f ~0!u
. ~4!

Since we wish to bound the number of zeroes ofBi at some
segment contained in the original box, we will need to imb
the segment into some ball within a linear subspace ofC3 of
complex dimension 1, and also within the domain of ana
ticity of Bi . The real zeroes will certainly be no more tha
all the zeroes in the ball; the counterpart is that we need
know the maximum ofuBi u not only at the real points, bu
also at the complex ones. Hence one cannot simply cons
the size ofB at the physical points, which is a measurab
quantity. While it is true that the complex extension ofB is
determined by its real values, there is no useful estimate
its maximum modulus in terms of its restriction to the orig
nal box. At this point we must make use of somea priori
form for the Fourier expansion. This is provided, for hom
geneous turbulence in fluids, by the Kolmogorov distributi
of energy. Let us remember~see, e.g.,@17#! that the Fourier
modes of the velocity are divided, in increasing order, in
injection rangek,kin , where the dynamics are governed b
the forcing ~assumed to be a large-scale one!; the inertial
range kin<k,kd , where energy is transferred to small
scales via a direct cascade, follows; finally the dissipat
range,kd<k,`, where viscous dissipation is predominan
The size of the Fourier coefficients in each of these range
a different function of the energy dissipation«52dE/dt,
whereE is the kinetic energy

E5
1

2EV
u2dV.

The injection range is naturally dependent on the forcing a
cannot be determined in general. Within the inertial range
identity

uuku25CK«2/3k25/3 ~5!

is satisfied.CK , the Kolmogorov-Obukhov constant is dete
mined by independent arguments. Its value varies somew
with experiments:CK.1.422.

In the dissipative range,uk decreases exponentially

uuku25De2ak, ~6!

whereD is chosen so as to makeuuku continuous ink at the
boundary between ranges. The boundarykd is given by the
Kolmogorov microscale

kd5~«n23!1/4.

Notice that such a family of coefficients certainly are Gevr
summable, but we have now a much more precise expres
for them. As asserted in the Introduction, turbulent plasm
follow a slightly different distribution. As before, the Fourie
modes of both the velocity and the field are divided in thr
7-2
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ranges: the injection one, where they depend directly on
forcing, and the inertial and dissipative ranges. In the iner
range the energy~kinetic plus magnetic! satisfies

uuku21uBku25Ck23/2«1/2vA
1/2, ~7!

wherevA , the Alfvén velocity, is essentially the magnitud
of a large-scale average magnetic fieldB0 assumed to exist
and C is a different constant.C is less universal than th
Kolmogorov-Obukhov constant as it depends onB0 . « is
again the energy dissipation rate. In this case

«52
1

2

d

dtEV
u21B2dV.

As a matter of fact we will need onlyuBku2<C«1/2vA
1/2. At

the dissipative range the decay is exponential

uuku21uBku25De2gk. ~8!

Numerical simulations showg.4.8kd
21 @7#. D is chosen so

as to make the spectrum continuous at the limit point, giv
in this case by

kd5S «

h2vA
D 1/3

.

This means that

D5C«1/2vA
1/2kd

23/2egkd. ~9!

Notice that this means that the Gevrey exponents of Eq. ~3!
must satisfy s,g, and that B is defined in „@0,2p#
3(2g,g)…3.

III. NODES OF ALFVE´ N WAVES

Let us, therefore, assume that we are dealing with an
compressible turbulent plasma where the Iroshnik
Kraichnan statistics hold. LetB0 be a large-scale averag
magnetic field, with the turbulence provided by a sma
scale, fluctuating fieldb: thus B5B01b. Let us consider a
field line of B0, which given the characteristics of this fiel
we may take as a straight segmentS5@x02Re,x01Re# at
least for a length 2R<2s; e is a unit directional vector.
Assume that at least in the segmentS, b is given by shear
Alfvén perturbations alongB0. Thus thereB5B0e1be8, e8
orthogonal toe. Takex0 such thatub(x0)u5r .0. All this is
done for a fixed timet; we may change the segment f
anothert, provided its length is bounded below by 2R. To
find a bound foruBu, we will estimate all the terms of

uB~ t,z!u<(
k

uBk~ t !uuzku

associated to the inertial and dissipative ranges. For the
ertial range, which does not include the constant termk50,
03641
e
l

n

-
-

-

n-

(
1<k,kd

uBkuuzku< (
1<k,kd

C1/2«1/4vA
1/4k23/4esk

< (
1<k,kd

C1/2«1/4vA
1/4esk

5C1/2«1/4vA
1/4F S 4kd

2

es21
2

4kd

es21
2

8~kd21!

~es21!2

1
8

~es21!3D eskd2
8

~es21!3G . ~10!

We will assume that as usual in turbulent plasmas, the en
dissipation is not negligible and the resistivity is small. Th
kd is large and the dominant term in the sum above is

4C1/2«1/4vA
1/4

es21
kd

2eskd.

As for the dissipative range, we may bound it by

(
kd<k,`

uBkuuzku< (
kd<k,`

De(s2g)k

5De(s2g)kdS 4kd
2

12es2g
2

4kd

12es2g

2
8kd

~12es2g!2
1

8

~12es2g!3D . ~11!

Now the dominant term is

4D

12es2g
kd

2e(s2g)kd5
4C«1/2vA

1/2

12es2g
kd

1/2eskd.

Let us fixs, say ats5g/2. Then obviously the contribution
from the dissipative terms is negligible in comparison w
our bound on the inertial range, since we have nowkd to a
power of 1/2 instead of 2.

We will simply assume that the contribution of the inje
tion terms is bounded by a constantN independent of the
large valueskd andh21, which is reasonable. Let us app
Eq. ~4! to the functionf (z)5B(x01ze)•e85b(x01ze), R
5g/2,

M ~R!<N1
4C1/2«1/4vA

1/4

eg/221
kd

2e(g/2)kd, ~12!

and therefore

ln
M ~R!

u f ~0!u
< lnF1

r S N1
4C1/2«1/4vA

1/4

eg/221
kd

2e(g/2)kdD G . ~13!

The behavior of this function is governed by the large te
(eg/221)21kd

2.(2/4.8)kd
3 . We may write
7-3
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ln
M ~R!

u f ~0!u
d ln~kd

3!2 ln r 5 ln~«h22vA
21!2 ln r . ~14!

Let n(R) be the number of nodes of the Alfve´n waveb along
the segmentS5@x02(R/2)e,x01(R/2)e#, where R,g/2.
We cannot takeR as preciselyg/2 because we do not know
for how long the field line ofB0 may be taken as a straigh
segment. Jensen’s formula for the number of zeroesf
yields

n~R!d
1

ln 2
lnS 1

r
«h22vA

21D , ~15!

which is our main estimate. It may also be written as

«fr2n~R!h2vA , ~16!

which asserts that the energy dissipation is larger than
amount depending on the analyticity radius~the exponent of
decay of dissipative modes!, times 2 to the number of node
of any shear Alfve´n wave along any field line of the averag
magnetic field; the resistivity to the power 2, and the Alfv´n
s

hy

tt.

03641
n

velocity. We emphasize thatn(R) is a purely local quantity
connected to a single field line, whereas« concerns the glo-
bal energy. Such a close relation would be impossible i
plasma with a neatly ordered geometry, where Alfve´n waves
may remain localized.

IV. CONCLUSIONS

While it is obvious that Alfve´n waves along a field line in
a diffusive plasma decay more rapidly with the number
nodes of the perturbation, it seems reasonable that if
initial perturbation was localized along a single line, or
small set of them, the global dissipation of energy caused
the wave decay should be small. This is not correct in tur
lent plasmas, as the chaotic flow disperses the wave m
more efficiently than the magnetic diffusivity. In fact, b
using some results of the analytic function theory and
Iroshnikov-Kraichnan energy spectrum distribution, an e
mate may be found, which is below the total energy dissi
tion in terms of the number of nodes of a shear Alfve´n wave
along a segment of a single field line of the average magn
field.
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