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Shear Alfven waves in turbulent plasmas
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The rate of decay of shear Alfaewvaves along a magnetic field line of a diffusive plasma grows with the
number of nodes of the initial perturbation. It is reasonable to think that the energy dissipation produced by this
decay will be small if the perturbation was localized in a small set. This does not happen in turbulent plasmas:
transport of the oscillation by the flow involves the whole domain. A general relation is obtained proving that
the global energy dissipation is bounded below by an exponential of the number of nodes of any shear Alfve
wave along a segment of any field line of the average magnetic field.
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I. INTRODUCTION In axisymmetric configurations the frequency of Alfve
waves grows with the azimuthal modé], essentially the
Alfvén waves may be viewed as elastic oscillations ofsame phenomenon. In the same spirit, field lines connecting
magnetic field lines within a plasma. They were one of thenull points are particularly unstable by accumulation of
first and still most important successes of the magnetohydraiodes at the end®,6].
dynamical(MHD) description of plasmas, and their impor-  Although as we have seen that diffusivity damps the en-
tance in many aspects of plasma physics, ranging from thergy of Alfven waves, the more rapidly it does, the higher the
stability of magnetically confined plasmas to magnetospherimumber of nodes, it is obvious that if the wave did not have
problems, is unquestionable. Shear Aiweaves are particu- much energy in the first placéby being localized near a
larly intuitive in ideal (without kinetic or magnetic diffusiv- small set of field line energy dissipation will remain small.
ity) plasmas: they may be interpreted as transversal pertutA/e may ask what could happen in turbulent plasmas, where
bations of a background magnetic field, and can be stronglshe diffusion of Alfven waves is enhanced by a chaotic fluid
localized near particular field lines. By this reason they werdlow. It is clear that localization will not work there: the
proposed for plasma heating purposes: see,[@gThe idea perturbation will extend to the whole turbulent region much
was that an electromagnetic wave of the right frequencymore quickly than the time scale of simple resistive diffu-
would enter in resonance with a particular set of field linession. In these conditions, how can one relate the number of
away from the plasma boundary in order to inject energynodes of a shear Alfrewave along a single field line with
there. While it is true that fusion and astrophysical plasmashe total energy dissipation? The question is not purely aca-
have an extremely low diffusivity, this is nonetheless posi-demic: plasmas with a large-scale magnetic field and small-
tive and Alfven waves are modified by it: they eventually scale turbulent velocity and field are very relevésge, e.g.,
decay unless a forcing is present, and diffuse away from it§7]). An extremely important phenomenon, the Alfiveffect,
original location. Nevertheless the concept has proved exconsists in that small-scale velocity and fieldb tend to
tremely robust and Alfue waves have been identified almost become identical or opposedi€ +b), precisely as in the
everywhere, from the solar winf®] to pseudodiffusion in  shear Alfven waves. This has been explainéthough not
liguid metals[3]. with total rigon by arguing that the average fieR} acts as a
The frequency of shear Alfvewaves may, in principle, be field guide foru andb, who behave as Alfve perturbations
arbitrarily high: it is connected to the number of nodes of the[8]. In particular this implies equipartition of energy?
perturbed field along the background field line, rather in a=b2, Unquestionably the Alfve effect exist§9,10] and it
manner similar to the frequency of the sound produced by @lays an important role in several astrophysical phenomena.
plucked string depends on the number of the up and dowMoreover, it is the reason why it has been arglied12] that
oscillations of the string. For perturbations of an incompressthe Kolmogorov statistics for homogeneous hydrodynamic
ible static equilibrium with magnetic fielB, the dispersion turbulence should be modified for plasmas: the decay at the

relation of a perturbed field= b, exp{k- x+iwt) is inertial range is slowetk %2 againstk . It seems worth-
wile to study how Alfven waves dissipate energy in turbulent
_ vt n)k2+i B ~k)2—(v_ 7)%K*| M2 (1) Plasmas,
= 2 - 0 4 ’ To address this question, we will first use some rigorous

results on the Gevrey regularity of the solutions of the
where, for simplicity, we have normalized the magnetic per-Navier-Stokes and MHD equations to find that these solu-
meability and the plasma density to i;stands for the vis- tions may be extended analytically to a three-dimensional
cosity and# for the resistivity of the plasma. If both coin- complex space. Some classical function theory will provide
cide, it is apparent that we may get an arbitrarily highus with a bound of the number of zeroes of an analytic func-
frequency(the imaginary part ofw) with a vectork large  tion in a ball in terms of its maximum size at the boundary.
and parallel toB,, although the higher the frequency, the This may be applied to the number of nodes of a shear Al-
faster it decays. fvén wave along a field line. Thus we may estimate the num-
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ber of nodes by the maximum size of the complex extensioibenote byn(R) the number of zeroes dfwithin the ball

of the magnetic field. So far all the results are fully rigorous,D(0,R/2), and letM(R) be the maximum off| at the circle
but to find this maximum we need to accept the previouslyS(0,R). Then it easily follows

mentioned Iroshnikov-Kraichnan energy statistics for MHD

turbulence. These will yield a bound of the maximum in 1 M(R)

terms of physically relevant parameters: resistivity, energy n(R)gﬁm“(o)y )
dissipation and Alfva velocity. As a consequence we will

obtain a lower bound on the global energy dissipation inSince we wish to bound the number of zeroe8phat some
terms of the number of nodes of a shear Aifugave along segment contained in the original box, we will need to imbed
any background magnetic field line in the turbulent region.the segment into some ball within a linear subspacebf
This result is possible thanks to the mixing properties ofcomplex dimension 1, and also within the domain of anali-
chaotic flows, which in more than one sense are simpler thaticity of B;. The real zeroes will certainly be no more than

more structured ones. all the zeroes in the ball; the counterpart is that we need to
know the maximum ofB;| not only at the real points, but
Il. GENERAL ANALYSIS also at the complex ones. Hence one cannot simply consider

the size ofB at the physical points, which is a measurable
Although the concept is more general, for our purposes iuantity. While it is true that the complex extensionBfs
is enough to recall that a periodic functiérwith Fourier  determined by its real values, there is no useful estimate of
coefficients{f, :k e Z°} is said to satisfy a Gevrey condition jts maximum modulus in terms of its restriction to the origi-

if for some o>0, nal box. At this point we must make use of someriori
form for the Fourier expansion. This is provided, for homo-
E 27K |2 < 0. geneous turbulence in fluids, by the Kolmogorov distribution
e 73 of energy. Let us remembésee, e.g.[17]) that the Fourier

modes of the velocity are divided, in increasing order, in the
It is known that if the velocityu satisfies the Navier-Stokes injection rangek<k;,, where the dynamics are governed by
equations in a periodic bop0,271%, its Fourier expansion  the forcing (assumed to be a large-scale pnie inertial

range k;,<k<ky, where energy is transferred to smaller

scales via a direct cascade, follows; finally the dissipative

— ik-x
u(t,x)—k%3 uc(t)e 2) range,ky<k<, where viscous dissipation is predominant.
- The size of the Fourier coefficients in each of these ranges is
satisfies a Gevrey condition for soree>0, a different function of the energy dissipatien= —dE/dt,
whereE is the kinetic energy
eZ(rk 2<oo
gés |u(t)]?<e, (3) el f gy
2]q

where for any multi-indexk, k=|ky|+ |ky|+|ks| [13]. This L _ _
means that the functior—u(t,x) may be analytically ex- The injection range is naturally dependent on the forcing and
tended to the product of three ban@,27]x (— o, a))? in cannot be determined in general. Within the inertial range the

the complex spac€3. This result is always true even with dentity
an added forcing, provided it too satisfies a Gevrey condi- Uy 2= Cye2% 53 )
tion, up to some time depending on the initiglD), andalso K K

for as long as the solution and its gradient remain bounded i% satisfiedCy , the Kolmogorov-Obukhov constant is deter-

5 .
the L® norm. The proof of this theorem depends on SOM&nineq by independent arguments. Its value varies somewhat
formal properties of the Navier-Stokes equations that are alsg;;i, experimentsCy=1.4— 2

valid for the MHD systen{see, e.g.[14]). In fact the result

has been later generalized to a wider class of equations that
include the MHD one$15]. Therefore, both velocity and |u|?=De™ K (6)
magnetic fieldB may be analytically extended.

Since we will be interested in the number of zeroes ofwhereD is chosen so as to make,| continuous ink at the
some componerB; of B, we recall one of the most impor- boundary between ranges. The boundafyis given by the
tant tools for these tasks: the Jensen formula, which we rekolmogorov microscale
peat for conveniencésee, e.9.[16] for a prooj. Letf be an

In the dissipative rangey, decreases exponentially

analytic function in a disi>(0,R), and letay, . .. ,ay be its kg=(ev V4
Eggo?rshgg(o’m’ repeated as many times as their multiplic- Notice that such a family of coefficients certainly are Gevrey

summable, but we have now a much more precise expression
NoR 1 (2n for them. As assgrted in the _Intrpduction, turbulent plas.mas
1f0) ] — = exp( _J In| f(Ré”|d0)) _ follow a slightly different distribution. As before, the Fourier
=1 | an| 2m o modes of both the velocity and the field are divided in three
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ranges: the injection one, where they depend directly on the . Vo 14 Ua 34k
forcing, and the inertial and dissipative ranges. In the inertial Byl 2| =< C™% UA4k e’

range the energgkinetic plus magneticsatisfies 1=kskd 1=k<kg
- 1/2 < 12,114, 14 ok
|ug|2+ |By|2=Ck™¥% 1%, 112 7) <1sk<kd C e vye
wherev,, the Alfven velocity, is essentially the magnitude y 4K3 4ky  8(kg—1)
of a large-scale average magnetic fiBlglassumed to exist, =CYM | ——
and C is a different constantC is less universal than the e’—1 e’-1 (e"—1)

Kolmogorov-Obukhov constant as it depends B ¢ is 8
again the energy dissipation rate. In this case

R P
+(e‘f—1)3)e d (e“—1)3' (10

e=—5 —f u+B?dV. We will assume that as usual in turbulent plasmas, the energy
2dt)g L LT T LT
dissipation is not negligible and the resistivity is small. Then

. kq is large and the dominant term in the sum above is
As a matter of fact we will need onl{B,|><Ce2 3. At d g

the dissipative range the decay is exponential ACY2, /4, 114
= E A kieka,
|ui|?+[By|>=De . ) e’ -1

Numerical simulations show=4.8&,* [7]. D is chosen so As for the dissipative range, we may bound it by
as to make the spectrum continuous at the limit point, given

in this case by E By ]| 24 < E Delo— Mk
kd<k<00 kd<k<oc
e 1/3
kd:( ) . 4k§ 4kd
2 —Delr— 7k _
v =De d
7UA 1-e777 1-e777
This means that 8k, X a
D = Ce Y2 3%y ¥, 9 (1-e” "% (1-e” 3|
Notice that this means that the Gevrey exponenf Eq.(3)  Now the dominant term is
must satisfy c<+v, and thatB is defined in ([0,27] Yo 12
3
X(_V! 7)) . 4D kze(07Y)kd: 4Ce ZUA kl/Ze(rkd'
1-e7 7 ¢ 1-e77 ¢

Ill. NODES OF ALFVE N WAVES
. Let us fixo, say ato= y/2. Then obviously the contribution

Let us,_therefore, assume that we are dealing with an Neom the dissipative terms is negligible in comparison with
compressible turbulent plasma where the Iroshnikov-

. o our bound on the inertial range, since we have ngwo a
Kraichnan statistics hold. LeB, be a large-scale average g flo

tic field. with the turbul ided b I power of 1/2 instead of 2.
magnetic Tieid, wit € furbulence provided Dy a small- g )| simply assume that the contribution of the injec-
scale, fluctuating field: thusB=By+b. Let us consider a

i . . . e o tion terms is bounded by a constadtindependent of the
field line of By, which given the characteristics of this field, large valuesy and 7%, which is reasonable. Let us apply

we may take as a straight segméht [ x,— Re X+ Re] at Eq. (4) to the functionf(z)=B(x.+z6e) - e = b(x.+z6). R
least for a length R<2¢; e is a unit directional vector. d 4 (2)=B(x+28) (X ),

=v/2,
Assume that at least in the segméhtb is given by shear s
Alfvén perturbations along,. Thus thereB=B,e+be’, € 4C 12 14,114
orthogonal toe. Takex, such thafb(xy)|=r>0. All this is M(R)<N+ —— 2 K2e(¥2)kq, (12)
done for a fixed timet; we may change the segment for e”?2—1
anothert, provided its length is bounded below byrR2To
find a bound forlB|, we will estimate all the terms of and therefore
< k Y nl 2 ST T A 20 (v2)kyg
B(t,2)] ; IBi(D)]]2] Inlf(0)|<ln{r< Sy ke . (19

associated to the inertial and dissipative ranges. For the infFhe behavior of this function is governed by the large term
ertial range, which does not include the constant tkeaD, (e"2— 1)*1k2~—~(2/4.8)k§. We may write
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. velocity. We emphasize thait(R) is a purely local quantity

va)—Inr. (14 connected to a single field line, whereasoncerns the glo-
bal energy. Such a close relation would be impossible in a

Letn(R) be the number of nodes of the Alfvavaveb along  Plasma with a neatly ordered geometry, where Atfveaves
the segmentS=[x,— (R/2)e,xo+ (R/2)e], where R<y/2. ~ may remain localized.
We cannot takdr as preciselyy/2 because we do not know
for how long the field line 0B, may be taken as a straight IV. CONCLUSIONS
segment. Jensen’s formula for the number of zeroe$ of
yields

M(R) . o
Inm<ln(kd)—lnr—ln(sn

2

While it is obvious that Alfve waves along a field line in
a diffusive plasma decay more rapidly with the number of
1 1 nodes of the perturbation, it seems reasonable that if the
n(R)<—In(—s 7,—20;1), (15) initial perturbation was localized along a single line, or a
In2=\r small set of them, the global dissipation of energy caused by
the wave decay should be small. This is not correct in turbu-
lent plasmas, as the chaotic flow disperses the wave much
e=r2"Rp2y . (16p  more efficiently than the magnetic diffusivity. In fact, by
using some results of the analytic function theory and the
which asserts that the energy dissipation is larger than aloshnikov-Kraichnan energy spectrum distribution, an esti-
amount depending on the analyticity raditise exponent of mate may be found, which is below the total energy dissipa-
decay of dissipative modggimes 2 to the number of nodes tion in terms of the number of nodes of a shear Affweave
of any shear Alfva wave along any field line of the average along a segment of a single field line of the average magnetic
magnetic field; the resistivity to the power 2, and the Aifve field.

which is our main estimate. It may also be written as
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